手机浏览器扫描二维码访问
根值审敛法是判别级数敛散性的一种方法,由法国数学家柯西首先发现。
自打发现级数以来,对于级数的收敛性的研究从来没有停止过。
但是柯西看到如此多种判断级数收敛的办法,却个个有一种不完善的感觉。
似乎这是一种数学上的洁癖。
对一个接近极限的数字开对应项数的根,如果这个数大于1就发散,小于1就收敛。这两个按照标准方法很容易证明。
但是等于1是发射或收敛,柯西也犯了难。
这是什么意思?也要看具体情况,那这种具体,就反应根值审敛法对级数的判断无效。
而且如果在数学中遇到等于1的情况,那就是数学上的一个麻烦。
是否还有其他的办法来补救这一切。
目前是没有。
那该怎么办?柯西必须对此要想出个办法,或者要给出个解释。
柯西觉得,这个倒是可以看成是无数个接近1的数字相加。
如果前多个数接近1太近,就会出现发散。如果前多个数接近1太远,就会收敛。
但柯西也不能确定这些,心里总是隐隐的觉得不对劲。
想的太久以至于都快要疯了。
或许发散和收敛仅仅来源人认识的局限性,以后的数学可以能出现更加复杂的性质吧。
但除了发散和收敛以外,还能出现什么性质?难道是一种模糊的震荡性?甚至是更加奇怪的东西?
不想了,先睡个好觉吧。
除此以外,还有一种审敛法,叫比较审敛法。这个好理解,就是一个级数,它的每一项都比一个收敛级数小,这个也是收敛级数。
这个的很明显了,不会有什么漏洞,几乎就像一个废话一般。
喜欢数学心请大家收藏:()数学心
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
小仓鼠今天有猫了吗 神魔剑玄录 我真没想在过去的年代当学霸 君为客 还是修仙吧 第三十年明月夜 攻略对象变成室友后,他不对劲 杀了那个妖鬼 撩惹疯批顶E,笨蛋少爷他逃了 我在死亡副本当管理员 末世后我成了疯批alpha们的安抚剂 新搬来的邻居 兽世养山君[种田] 穿到虫族和军雌相亲 枭鸢 怪物崽崽和他的怪物监护人 上流假象 夸夸我的神探祖父穿越爹 死神不来了 迷津蝴蝶
宋蒙联合灭金是南宋王朝所犯下的最大战略错误,如果宋蒙当时谈判失败,历史之路又该如何走?本书就假设了一个偶然的因素导致了宋蒙联合灭金的谈判失败后,历史从此改变的故事。本书主人翁李思业是唐朝一支没落宗室的后裔,城破后十四岁的他被掳到金国成为奴隶,几经波折,他重获自由身后回到故国的都城临安,并渐成商贾。一个偶然的发现,他...
关于军婚也缠绵新书总裁大人,我不约已发,美少女们多多支持呦出版名只因当时太爱你他是特种大队的营长,两杠二星的中校,精英中的精英。她是父母双亡的小孤女,埋头苦学七年后才终于成为军区医院的一员。他的英姿风靡整个军区,女兵护士全都将他视为梦中情人,只有她例外。他的战友受伤,她初出茅庐站上手术台,术后竟丢下病人逃得不见踪影,第二天,他以玩忽职守罪将她骂了个狗血淋头。本以为这是他们初次结下梁子,却不曾...
一个狠字贯穿全文。这是天命游戏,无限轮回只为活着!不管是命运之子还是天命反派,不管是轮回者还是穿越者,都得屎!本书又叫我就是天命轮回尽头我要成为神从海贼开始轮回推荐海贼之银狐如果您喜欢从海贼开始猎杀主角,别忘记分享给朋友...
关于腹黑总裁,娇妻有点甜她本是豪门千金,一夜之间,家徒四壁。无奈之下,她在名利圈中浮沉寻求出路,不想,却落入他的掌心...
关于无限至尊直播系统每一卷独立,可以单独阅读。直播文嘻哈海贼王直播文舌尖上的西游记虚拟网游末日生化危机异界巅峰召唤神科幻都市漫威之黑客空间虚拟网游超神英雄...
当梁凡从地底爬出来之后,才发现不是变秃才能变强!我要控制我自己,要是不小心一拳打爆这个星球怎么办?安静的隐藏在世俗,全世界都不知道我有多强,虽然这个世界妖魔鬼怪很变态,但苟着享受才是我要的生活啊!要是有人偏偏不想让你过得舒服呢?那就给他一拳!...