手机浏览器扫描二维码访问
稍后,米尔诺(Milnor)发现了七维怪球。
七维怪球是一个处处光滑的七维流形,虽然它可以连续地变形成正常的(圆球状)的七维球面,但却不能光滑地变形成正常的七维球面。
因此怪球和正常球面是同胚,但不是微分同胚。
本章一开始提到的数学家米尔诺,他在1962年获得菲尔兹奖,主要就是因为证明了怪球确实存在。
在此之前,人们根本不相信会有这种空间,所以才会被称为“怪异的”。
这是Milnor怪球的微分结构。S^4上的S^3-丛是一个纤维丛,底流形是S^4,标准纤维是S^3.这个纤维丛同胚于S^7,但是不微分同胚于S^7.
这是同一个度局部欧氏空间上可以存在不同微分结构的着名例子,或者说是拓扑结构不足以决定(如果容许的话)微分结构的例子。
如果一个拓扑空间是一个局部欧氏空间的话,就可以用局部坐标来分片刻画它,但是坐标变换只能是连续的,不一定可微。
如果在所有这问些坐标系中筛选一部分出来,使之能够覆盖整个空间,而相答互之间的坐标变换又是光滑(或某个k阶连续)的,这就相当于在该空间上指定了一个微分结构(要求微分结构极大,即,不可再向其中添加新的坐标系使之满足相容性,这只是为了让这个极大集去代表这个微分结构而已)。
Milnor怪球的例子表明,在拓扑结构所容内许的局部坐标系中挑容选微分结构的时候,有可能选出不同的微分结构,所以,微分结构是拓扑结构之上的一个新的结构。
它不是球极投影的纤维丛。
喜欢数学心请大家收藏:()数学心
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
小仓鼠今天有猫了吗 撩惹疯批顶E,笨蛋少爷他逃了 上流假象 迷津蝴蝶 兽世养山君[种田] 末世后我成了疯批alpha们的安抚剂 我在死亡副本当管理员 还是修仙吧 死神不来了 第三十年明月夜 夸夸我的神探祖父穿越爹 枭鸢 君为客 穿到虫族和军雌相亲 新搬来的邻居 怪物崽崽和他的怪物监护人 我真没想在过去的年代当学霸 攻略对象变成室友后,他不对劲 神魔剑玄录 杀了那个妖鬼
宋蒙联合灭金是南宋王朝所犯下的最大战略错误,如果宋蒙当时谈判失败,历史之路又该如何走?本书就假设了一个偶然的因素导致了宋蒙联合灭金的谈判失败后,历史从此改变的故事。本书主人翁李思业是唐朝一支没落宗室的后裔,城破后十四岁的他被掳到金国成为奴隶,几经波折,他重获自由身后回到故国的都城临安,并渐成商贾。一个偶然的发现,他...
关于军婚也缠绵新书总裁大人,我不约已发,美少女们多多支持呦出版名只因当时太爱你他是特种大队的营长,两杠二星的中校,精英中的精英。她是父母双亡的小孤女,埋头苦学七年后才终于成为军区医院的一员。他的英姿风靡整个军区,女兵护士全都将他视为梦中情人,只有她例外。他的战友受伤,她初出茅庐站上手术台,术后竟丢下病人逃得不见踪影,第二天,他以玩忽职守罪将她骂了个狗血淋头。本以为这是他们初次结下梁子,却不曾...
一个狠字贯穿全文。这是天命游戏,无限轮回只为活着!不管是命运之子还是天命反派,不管是轮回者还是穿越者,都得屎!本书又叫我就是天命轮回尽头我要成为神从海贼开始轮回推荐海贼之银狐如果您喜欢从海贼开始猎杀主角,别忘记分享给朋友...
关于腹黑总裁,娇妻有点甜她本是豪门千金,一夜之间,家徒四壁。无奈之下,她在名利圈中浮沉寻求出路,不想,却落入他的掌心...
关于无限至尊直播系统每一卷独立,可以单独阅读。直播文嘻哈海贼王直播文舌尖上的西游记虚拟网游末日生化危机异界巅峰召唤神科幻都市漫威之黑客空间虚拟网游超神英雄...
当梁凡从地底爬出来之后,才发现不是变秃才能变强!我要控制我自己,要是不小心一拳打爆这个星球怎么办?安静的隐藏在世俗,全世界都不知道我有多强,虽然这个世界妖魔鬼怪很变态,但苟着享受才是我要的生活啊!要是有人偏偏不想让你过得舒服呢?那就给他一拳!...